The nontriviality of the one-dimensional problem of a 'true' self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L7
(http://iopscience.iop.org/0305-4470/17/1/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:17

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The non-triviality of the one-dimensional problem of a 'true' self-avoiding walk

S P Obukhov
L D Landau Institute for Theoretical Physics, Moscow, USSR

Received 28 September 1983

Abstract

It is shown that the root-mean-square distance ${\overline{R^{2}}}^{1 / 2}$ for the self-avoiding walk problem is related to the number of steps N as $R^{2} \sim N^{2 \nu}$ with $\nu=\frac{2}{3}$ rather than the 'self-obvious' $\nu=1$. This coincides with the mean-field theory result obtained by Pietronero which erroneously was not extended to the case $d=1$.

It has been shown recently by Amit et al (1983) that the statistics of the self-avoiding walk differs from that of a polymer chain with excluded volume. It was shown that the upper critical dimension for this problem is $d_{\mathrm{c}}=2$ instead of $d_{c}=4$ for the problem of a chain with excluded volume. The diagram technique rules and renormalisation group equations for this problem at $d \leqslant 2$ were obtained by Obukhov and Peliti (1983). Using a quite different Flory-like self-consistent approximation, Pietronero (1983) obtained a simple formula for the mean-square distance exponent:

$$
\begin{array}{ll}
\nu=\frac{1}{2}, & d \geqslant 2 \\
\nu=2 /(2+d), & d<2 . \tag{1}
\end{array}
$$

At dimension $d=2-\varepsilon$ slightly smaller than two this result disagrees with the result $\nu=\frac{1}{2}+\frac{1}{2} \varepsilon+\mathrm{O}\left(\varepsilon^{2}\right)$ obtained by the ε-expansion method as is usually the case for the Flory method near the upper critical dimension. According to Pietronero (1983), (1) is inapplicable also at $d=1$, since at $d=1$ the problem seems to have a trivial solution with $\nu=1$.

However, the Flory method usually gives a very good approximation for ν at low dimensions and the exact value of ν at marginal dimension. It will be shown here that at $d=1$ the self-avoiding walk problem is non-trivial and is characterised by $\nu=\frac{2}{3}$ in agreement with (1).

The most general formulation of the self-avoiding problem can be made using five independent charges (Bulgadaev and Obukhov 1983), but in the one-dimensional case only one charge is relevant. The probability of each step from point i to the neighbouring points $i \pm 1$ can be written in the form

$$
\begin{equation*}
P_{i \pm 1}=\exp \left(-g h_{i \pm 1}\right) /\left[\exp \left(-g n_{i+1}\right)+\exp \left(-g n_{i-1}\right)\right] \tag{2}
\end{equation*}
$$

Here $n_{i \pm 1}$ is the number of previous visits of points $i \pm 1$. If $g \gg 1$ the probability to turn back for a walker who starts from the origin in one direction is exponentially small. Thus, if the number of steps $N \ll \mathrm{e}^{g}$, then $\nu=1$. But, if $N \sim \mathrm{e}^{g}$ then the turning points may well appear. If once the walker turns backward, the probability that he
turns once more is again e^{-8}. But the whole walk cannot be considered as a random one with an effective step $N_{0} \sim \mathrm{e}^{8}$. It is because the turning points are the points where the density of previous visits n has a discontinuity of height two, and these points affect very strongly the further wandering.

Now we consider the case of small g. Let the wandering begin at point $x=0$ and $P_{N}(x)$ be the probability that after N steps the walker is at point x. Then for $P_{N+1}(x)$ we can write, expanding (2)

$$
\begin{equation*}
P_{N+1}(x)=P_{N}(x-1)\left(\frac{1}{2}-\nabla n_{N}(x-1) g\right)+P_{N}(x+1)\left(\frac{1}{2}+\nabla n_{N}(x+1) g\right) \tag{3}
\end{equation*}
$$

Here $n_{N}(x)$ is the number of visits of point x after N steps, and ∇ is a lattice derivative, $\nabla n(x)=\frac{1}{2}[n(x+1)-n(x-1)]$. Expanding $P_{N+1}(x)$ and $n_{N}(x \pm 1)$ we obtain

$$
\begin{equation*}
\frac{\partial P_{N}(x)}{\partial N}=\frac{1}{2} \frac{\partial^{2} P_{N}(x)}{\partial x^{2}}+2 g P_{N}(x) \frac{\partial^{2} n_{N}(x)}{\partial x^{2}}+2 g \frac{\partial P_{N}}{\partial x} \frac{\partial n_{N}}{\partial x} . \tag{4}
\end{equation*}
$$

For $n_{N}(x)$ we have an obvious normalisation condition

$$
\int_{-\infty}^{+\infty} n_{N}(x) \mathrm{d} x=N .
$$

The first term on the rhs of (4) is comparable with the others and should be retained only in the case of a random walk when $\bar{x}^{2} \sim N$. This is possible when the number of previous visits is small, i.e. $n g \ll 1$ or $N \ll 1 / g^{2}$. If the reverse inequality holds, $N \gg 1 / g^{2}$, this term can be omitted and through the dimensionality arguments we obtain

$$
1 / N \sim\left(n / x^{2}\right) g, \quad \text { where } n \sim N / x
$$

or

$$
\begin{equation*}
x \sim g^{1 / 3} N^{2 / 3}, \quad n \sim g^{-1 / 3} N^{1 / 3} \tag{5}
\end{equation*}
$$

Using (5) it can be shown that $\nabla n_{N}(x) \sim g^{1 / 3} N^{-1 / 3} \ll 1$, i.e. the expansion of the exponent in (2) in derivation (3) was made correctly.

Thus the corelation length exponent is $\nu=\frac{2}{3}$ in agreement with Pietronero's result at $d=1$.

References

