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LEITER TO THE EDITOR 

The non-triviality of the one-dimensional problem of a 
‘true’ self-avoiding walk 

S P Obukhov 
L D Landau Institute for Theoretical Physics, Moscow, USSR 

Received 28 September 1983 

Abstract. It is shown that the root-mean-square distance z”’ for the self-avoiding walk 
problem is related to the number of steps N as R 2 - N 2 ’  w’ ith U = $  rather than the 
‘self-obvious’ U = 1. This coincides with the mean-field theory result obtained by Pietronero 
which erroneously was not extended to the case d = 1. 

It has been shown recently by Amit et a1 (1983) that the statistics of the self-avoiding 
walk differs from that of a polymer chain with excluded volume. It was shown that 
the upper critical dimension for this problem is d, = 2 instead of d, = 4 for the problem 
of a chain with excluded volume. The diagram technique rules and renormalisation 
group equations for this problem at d d 2 were obtained by Obukhov and Peliti (1983). 
Using a quite different Flory-like self-consistent approximation, Pietronero (1983) 
obtained a simple formula for the mean-square distance exponent: 

. = f  2, d 2 2  

v = 2 / ( 2 +  d ) ,  d < 2 .  

At dimension d = 2 - E slightly smaller than two this result disagrees with the result 
v = i + & + O ( ~ ’ )  obtained by the &-expansion method as is usually the case for the 
Flory method near the upper critical dimension. According to Pietronero (1983), (1) 
is inapplicable also at d = 1, since at d = 1 the problem seems to have a trivial solution 
with U = 1. 

However, the Flory method usually gives a very good approximation for v at low 
dimensions and the exact value of v at marginal dimension. It will be shown here that 
at d = 1 the self-avoiding walk problem is non-trivial and is characterised by U = f in 
agreement with (1) .  

The most general formulation of the self-avoiding problem can be made using five 
independent charges (Bulgadaev and Obukhov 1983), but in the one-dimensional case 
only one charge is relevant. The probability of each step from point i to the neighbour- 
ing points i *  1 can be written in the form 

pi*1= exp(-ghi* i)/[exp(-gni+l) + exp(-gn,-dl. ( 2 )  
Here nikl is the number of previous visits of points i *  1. If g >> 1 the probability to 
turn back for a walker who starts from the origin in one direction is exponentially 
small. Thus, if the number of steps N << eg, then v = 1.  But, if N - eg then the turning 
points may well appear. If once the walker turns backward, the probability that he 
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turns once more is again e-g. But the whole walk cannot be considered as a random 
one with an effective step N o  - e8. It is because the turning points are the points where 
the density of previous visits n has a discontinuity of height two, and these points 
affect very strongly the further wandering. 

Now we consider the case of small g. Let the wandering begin at point x = 0 and 
P N ( x )  be the probability that after N steps the walker is at point x. Then for P N + l ( x )  
we can write, expanding ( 2 )  

PN+I(X) = PN ( x  - l)(+ - VnN ( x  - 1)s) + PN( x + 1)(4 + VnN( x + 1 ) g ) .  
(3) 

Here n N ( x )  is the number of visits of point x after N steps, and V is a lattice derivative, 
V n ( x ) = 4 [ n ( x + l ) - n ( x - l ) ] .  Expanding P N + l ( ~ )  and n N ( x * l )  we obtain 

For n N ( x )  we have an obvious normalisation condition 
+a0 

~ N ( x )  dx=N.  I_, 
The first term on the RHS of (4) is comparable with the others and should be retained 
only in the case of a random walk when f 2 - N  This is possible when the number of 
previous visits is small, i.e. ng << 1 or N << l / g 2 .  If the reverse inequality holds, N >> l / g 2 ,  
this term can be omitted and through the dimensionality arguments we obtain 

where n - N / x  1 / N  - ( n / x 2 ) g ,  
or 

( 5 )  

Using ( 5 )  it can be shown that V n N ( x ) - g 1 / 3 N - 1 / 3 < <  1, i.e. the expansion of the 
exponent in (2) in derivation (3) was made correctly. 

Thus the corelation length exponent is v = 3 in agreement with Pietronero's result 
at d = l .  

- g - 1 / 3 ~ 1 / 3  X - g 1 / 3 N 2 / 3 ,  
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